## Combinatorics, 2016 Fall, USTC

## Outlines in Week 2

### 2016.9.13

## Inclusion-Exclusion Theorem

Let $A_{1}, \ldots, A_{n}$ be $n$ subsets of the groud set $\Omega$.

- Definition. Let $A_{\emptyset}=\Omega$; and for any nonempty subset $I \subseteq[n]$, let

$$
A_{I}=\cap_{i \in I} A_{i} .
$$

If $|I|=k$, then we call $A_{I}$ as a k-fold inclusion. For any integer $k \geq 0$, write

$$
S_{k}=\sum_{\substack{I \in\left(\begin{array}{c}
{[n] \\
k}
\end{array}\right)}}\left|A_{I}\right|
$$

to be the sum of the sizes of all $k$-fold intersections.

## - Inclusion-Exclusion formula.

$$
\left|A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right|=\sum_{k=1}^{n}(-1)^{k+1} S_{k}
$$

Sometime we also use the following version of Inclusion-Exclusion formula,

$$
\left|A_{1}^{c} \cap A_{2}^{c} \cap \ldots \cap A_{n}^{c}\right|=\left|\Omega \backslash\left(\cup_{i=1}^{n} A_{i}\right)\right|=\sum_{k=0}^{n}(-1)^{k} S_{k},
$$

where $A_{i}^{c}=\Omega \backslash A_{i}$ means the complement of subset $A_{i}$. We point out that $S_{0}=\left|A_{\emptyset}\right|=|\Omega|$. It also holds that

$$
\left|A_{1}^{c} \cap A_{2}^{c} \cap \ldots \cap A_{n}^{c}\right|=\sum_{I \subset[n]}(-1)^{|I|}\left|A_{I}\right| .
$$

- Proof 1:uses the characterization funtions.For any subset $X \subseteq \Omega$, we define its characterization function $\mathbf{1}_{X}: \Omega \rightarrow\{0,1\}$ by

$$
\mathbf{1}_{X}(x)=\left\{\begin{array}{l}
1, x \in X  \tag{0.1}\\
0, x \in \Omega \backslash X
\end{array}\right.
$$

So we have $\sum_{x \in \Omega} \mathbf{1}_{X}(x)=|X|$. Let $A=A_{1} \cup A_{2} \cup \ldots \cup A_{n}$, consider $f(x)=\prod_{i=1}^{n}\left(\mathbf{1}_{A}-\mathbf{1}_{A_{i}}\right)$. Fact 1: $f(x) \equiv 0$ for any $x \in \Omega$.
Fact 2: $\prod_{i=1}^{n} \mathbf{1}_{A_{i}}=\mathbf{1}_{A}$

- Proof 2:considers the contributions of each element $a \in \Omega$ to both sides. We show: for each $a \in \Omega$, the contributions of $a$ to both sides always equal.


## Applications

- Definition. Let $\varphi(n)$ be the number of integers $m \in[n]$ which are relatively prime to $n$. Here, $m$ is relatively prime to $n$ means that the greatest common divisor of $m$ and $n$ is 1 .
- Fact: If $n$ can be written as $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{t}^{a_{t}}$, where $p_{1}, \ldots, p_{t}$ are distinct primes in $[n]$, then

$$
\varphi(n)=n \prod_{i=1}^{t}\left(1-\frac{1}{p_{i}}\right)
$$

We proved this by considering $\Omega=[n]$ and the sets $A_{i}=\left\{m \in[n]: p_{i} \mid m\right\}$ for $i=1, \ldots, t$. Note that $\varphi(n)=\left|\Omega \backslash\left(\cup_{i=1}^{t} A_{i}\right)\right|$

- Definition. A permutation $\sigma: X \rightarrow X$ is called a derangement of $X$ if $\sigma(i) \neq i$ for any $i \in X$. We use $D_{n}$ to denote the set of all derangements of $[n]$.
- Fact: For any integer $n \geq 1$,

$$
\left|D_{n}\right|=n!\sum_{k=0}^{n} \frac{(-1)^{k}}{k!}
$$

We apply inclusion-exclusion by considering $A_{i}=\{\sigma \mid \sigma(i)=i\}$ for $i=1, \ldots, n$.

- Observation: $\frac{\left|D_{n}\right|}{n!}=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!} \rightarrow e^{-1}$ asn $\rightarrow \infty$, so $\left|D_{n}\right| \sim \frac{n!}{e}$.
- Recall. (i) $S(n, k)$ is the number of partitions of a set of size $n$ into $k$ nonempty parts.
(ii) $S(n, k) k$ ! is the number of surjective functions from $Y$ to $X$, where $|Y|=n$ and $|X|=k$.


## - Fact:

$$
S(n, k)=\frac{1}{k!} \sum_{i=0}^{k}(-1)^{i}\binom{k}{i}(k-i)^{n}
$$

To prove this, we use inclusion-exclusion (again!) by considering $\Omega=X^{Y}$ and its subsets $A_{i}:=\{f: Y \rightarrow X \backslash\{i\}\}$.

